THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5000 Analysis I (Fall 2015) Makeup Quiz 2

1. (a) By using the ϵ -definition, show that $\lim_{n \to \infty} \frac{4n}{2n-3} = 2$.

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} -x^2 & \text{if } x \in \mathbb{Q}; \\ \\ 2x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

By using the $\delta - \epsilon$ definition, show that f(x) is continuous at x = 0.

2. Let $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Find the set of cluster points of S.

(Remark: Show why each point of the collection you give is the a cluster point of S and why the other points are not cluster points of S.)

3. Let $\{x_n\}$ be a sequence of bounded sequence.

Define $s_n := \sup\{x_k : k \ge n\}$ and $t_n := \inf\{x_k : k \ge n\}.$

- (a) Show that $\{s_n\}$ and $\{t_n\}$ are convergent sequences. Furthermore, if $\lim_{n \to \infty} s_n = \lim_{n \to \infty} t_n = L \in \mathbb{R}$, then $\{x_n\}$ converges to L as well.
- (b) Give an example of $\{x_n\}$ such that $\{s_n\}$ and $\{t_n\}$ are convergent, but $\{x_n\}$ is divergent.
- 4. Let K be a compact subset of \mathbb{R} and $f: K \to \mathbb{R}$ is a continuous function. Show that f(K) is also a compact subset of \mathbb{R} .